College of Humanities and Social Sciences

Cognitive and Behavioral Neuroscience Research Groups

Dr. Bitler's Lab

Dr. Doris Bitler Davis works with undergraduate and graduate students on issues related to animal learning and cognition. One area of focus involves understanding animal communication systems and their evolutionary relationship to human language. Subjects include domesticated species such as goats (Capra hircus), chickens (Gallus gallus domesticus), and dogs (Canis lupus familiaris). A related interest is in more clearly identifying, describing, and mitigating cognitive dysfunction syndrome in companion animals. Other lines of research include: 1) the pedagogy of psychology (the empirical evaluation of methods for improving student learning and retention), 2) food choices and eating behavior in humans and animals, and 3) anomalistic psychology (the study of extraordinary beliefs, behaviors, and experiences).

Dr. Brielmaier Sontag's Lab

Dr. Brielmaier Sontag is able to serve as an MA thesis or dissertation committee member for CBN students whose research has a behavioral neuroscience focus. She is also involved with research on online teaching and learning. Current studies are investigating the role of course design in student motivation and performance, and student engagement in an online vs. face-to-face physiological psychology course.

Dr. Flinn's Lab

Dr. Flinn’s research focuses on the role of metals in both behavior and physiology. Her research has emphasized the roles of zinc, copper and iron in learning and memory and also in macular degeneration. Her research currently focuses on two specific aspects of metals in behavior, Alzheimer’s disease (AD) and the extinction of learned fears. Her lab is developing genetically modified mice which model late onset Alzheimer’s disease, the most common form of the disease. In Alzheimer’s mice, increased zinc causes an impairment in memory, which may be due to decreased copper. Current studies are examining memory, affiliative behaviors and circadian rhythms and the role of inflammation and zinc transporters in AD mice. The work on extinction has shown that increased levels of zinc, which may act through reducing copper levels, lead to an inability to extinguish a learned fear normally, a possible factor in PTSD.

Dr. McDonald's Lab

I am investigating the neurocognitive basis of perceptual decision-making. More specifically, I am interested in examining the interplay between selective attention and performance monitoring (the cognitive process that allows us to evaluate our performance). I am particularly interested in how these cognitive processes enable perceptual decision-making when stimuli are difficult to discriminate, as often the case in the real world. A second area of research, with collaborators at the University of Maryland, is aimed at developing neurocognitive indices of the acceptability and addiction liability of tobacco products. My research takes advantage of EEG/ERP, and more recently fMRI, to characterize the neural underpinnings of these cognitive processes.

Dr. Thompson's Lab

My work examines two vital components of human cognition: social perception; and how we understand our physical world through the representation of time and space – roughly categorized, people and time/space. My goal is to uncover the neural mechanisms that underlie our understanding of our social and physical worlds using the tools of social and cognitive neuroscience, including functional magnetic resonance imaging (fMRI), source-localized electroencephalography (EEG), and more recently, repetitive transcranial magnetic stimulation (rTMS).

Print Friendly and PDF